Associative memory formation increases the observation of dendritic spines in the hippocampus.

نویسندگان

  • Benedetta Leuner
  • Jacqueline Falduto
  • Tracey J Shors
چکیده

Dendritic spines are sources of synaptic contact that can be altered by experience and, as such, may be involved in memories for that experience. Here we tested whether the acquisition of new memories is associated with changes in the density of dendritic spines. Adult male rats were trained using the trace eyeblink conditioning paradigm, an associative learning task that requires the hippocampus for acquisition. Additional groups were exposed to the same number of stimuli presented in an explicitly unpaired manner or were naive. Twenty-four hours later, the density of dendritic spines was measured using Golgi impregnation. Trace conditioning was associated with an increase in the density of dendritic spines on the pyramidal cells of area CA1 of the hippocampus, an effect that was prevented by blocking acquisition of the learned response with a competitive NMDA receptor antagonist. Training with delay conditioning, a similar task that does not require the hippocampus, also produced an increase in spine density. The learning-induced increase in dendritic spine density was specific to basal dendrites of pyramidal cells in the CA1 region of the hippocampus. Changes did not occur on their apical dendrites or on cells in the dentate gyrus or somatosensory cortex. These results suggest that the formation and expression of associative memories increase the availability of dendritic spines and the potential for synaptic contact.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats

Objective: The hippocampal formation, particularly the dentate gyrus (DG), shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs) gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigat...

متن کامل

Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats

Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...

متن کامل

Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-ind...

متن کامل

Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome

The Reelin signaling pathway is implicated in processes controlling synaptic plasticity and hippocampus-dependent learning and memory. A single direct in vivo application of Reelin enhances long-term potentiation, increases dendritic spine density and improves associative and spatial learning and memory. Angelman syndrome (AS) is a neurological disorder that presents with an overall defect in s...

متن کامل

Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines.

There has been an explosion of new information on the neurobiology of dendritic spines in synaptic signaling, integration, and plasticity. Novel imaging and analytical techniques have provided important new insights into dendritic spine structure and function. Results are accumulating across many disciplines, and a step toward consolidating some of this work has resulted in Dendritic Spines of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2003